DIFFERENTIAL TOPOLOGY FINAL - NOVEMBER 7 2014

RAMESH SREEKANTAN

Each question is of the marks indicated adding up to a total of 50 marks.

1a. Show that if ω is a closed 1-form on S^1 , then

$$\omega \text{ is exact} \Leftrightarrow \int_{S^1} \omega = 0$$

(5)

1b. Show that there exists closed forms on S^1 which are *not* exact. Conclude that $H^1_{deRham}(S^1, \mathbb{R}) \simeq \mathbb{R}.$ (5)

2a. Suppose $X = \partial W$, W compact, and $f : X \to Y$ is a smooth map. Let ω be a closed k-form on Y, $k = \dim(X)$. Prove that if f extends to all of W, then (5)

$$\int_X f^*(\omega) = 0$$

2b. Use part (a) to show that if $f_0, f_1 : X \to Y$ are homotopic maps from X a compact, boundaryless manifold of dimension k, then for all closed forms ω on Y, (5)

$$\int_X f_0^*(\omega) = \int_X f_1^*(\omega)$$

2c. Conclude that if X is simply connected, then $\int_{\gamma} \omega = 0$ for all closed 1-forms ω and all closed curves γ . (5).

3. Prove that S^2 and the torus T^2 are not diffeomorphic. (5)

4. Show that $GL_n(\mathbb{R})$, the group of $n \times n$ invertible matrices, forms a manifold. What is its dimension? (5)

5. Let $f: X \to X$ be a map with a fixed point x – that is, f(x) = x. If +1 is **not** an eigenvalue of df_x then x is called a *Lefschetz fixed point* and f is called *Lefschetz* if all of its fixed points are Lefschetz. Show that if X is compact and f is Lefschetz, then f has only finitely many fixed points. (10)

6. Suppose $f: X \to Y$ has $\deg_2(f) \neq 0$, where $\deg_2(f)$ is the mod 2 degree. Prove that f is onto. Recall that for \deg_2 to be defined, there have to be some conditions on X and Y. (5)